Toyota
Jeep Cherokee
 Service Manual
Fuel system » Fuel injection system » Description and operation
Manifold absolute pressure (map) sensor-pcm input

DESCRIPTION

The Manifold Absolute Pressure (MAP) sensor is attached to the side of the engine throttle body with 2 screws. The sensor is connected to the throttle body with a rubber L-shaped fitting.

OPERATION

The MAP sensor is used as an input to the Powertrain Control Module (PCM). It contains a silicon based sensing unit to provide data on the manifold vacuum that draws the air/fuel mixture into the combustion chamber. The PCM requires this information to determine injector pulse width and spark advance.

When manifold absolute pressure (MAP) equals Barometric pressure, the pulse width will be at maximum.

A 5 volt reference is supplied from the PCM and returns a voltage signal to the PCM that reflects manifold pressure. The zero pressure reading is 0.5V and full scale is 4.5V. For a pressure swing of 0-15 psi, the voltage changes 4.0V. To operate the sensor, it is supplied a regulated 4.8 to 5.1 volts. Ground is provided through the low-noise, sensor return circuit at the PCM.

The MAP sensor input is the number one contributor to fuel injector pulse width. The most important function of the MAP sensor is to determine barometric pressure. The PCM needs to know if the vehicle is at sea level or at a higher altitude, because the air density changes with altitude. It will also help to correct for varying barometric pressure. Barometric pressure and altitude have a direct inverse correlation; as altitude goes up, barometric goes down. At key-on, the PCM powers up and looks at MAP voltage, and based upon the voltage it sees, it knows the current barometric pressure (relative to altitude).

Once the engine starts, the PCM looks at the voltage again, continuously every 12 milliseconds, and compares the current voltage to what it was at key-on.

The difference between current voltage and what it was at key-on, is manifold vacuum.

During key-on (engine not running) the sensor reads (updates) barometric pressure. A normal range can be obtained by monitoring a known good sensor.

As the altitude increases, the air becomes thinner (less oxygen). If a vehicle is started and driven to a very different altitude than where it was at key-on, the barometric pressure needs to be updated. Any time the PCM sees Wide Open Throttle (WOT), based upon Throttle Position Sensor (TPS) angle and RPM, it will update barometric pressure in the MAP memory cell. With periodic updates, the PCM can make its calculations more effectively.

The PCM uses the MAP sensor input to aid in calculating the following:

  •  Manifold pressure
  •  Barometric pressure
  •  Engine load
  •  Injector pulse-width
  •  Spark-advance programs
  •  Shift-point strategies (certain automatic transmissions only)
  •  Idle speed
  •  Decel fuel shutoff

The MAP sensor signal is provided from a single piezoresistive element located in the center of a diaphragm.

The element and diaphragm are both made of silicone. As manifold pressure changes, the diaphragm moves causing the element to deflect, which stresses the silicone. When silicone is exposed to stress, its resistance changes. As manifold vacuum increases, the MAP sensor input voltage decreases proportionally. The sensor also contains electronics that condition the signal and provide temperature compensation.

The PCM recognizes a decrease in manifold pressure by monitoring a decrease in voltage from the reading stored in the barometric pressure memory cell. The MAP sensor is a linear sensor; meaning as pressure changes, voltage changes proportionately.

The range of voltage output from the sensor is usually between 4.6 volts at sea level to as low as 0.3 volts at 26 in. of Hg. Barometric pressure is the pressure exerted by the atmosphere upon an object. At sea level on a standard day, no storm, barometric pressure is approximately 29.92 in Hg. For every 100 feet of altitude, barometric pressure drops.10 in. Hg.

If a storm goes through it can change barometric pressure from what should be present for that altitude.

You should know what the average pressure and corresponding barometric pressure is for your area.

    More about «Description and operation»:

    Powertrain control module (PCM)

    Modes of operation

    Automatic shutdown (asd) relay sense-pcm input

    Battery voltage-pcm input

    Brake switch-pcm input

    Five volt sensor supplies-primary and secondary

    Fuel level sensor-pcm input

    Engine coolant temperature sensor-pcm input

    Extended idle switch-pcm input

    Oxygen sensor-pcm input

    Ignition circuit sense-pcm input

    Intake manifold air temperature sensor-pcm input

    Manifold absolute pressure (map) sensor-pcm input

    Oil pressure sensor-pcm input

    Power grounds

    Power steering pressure switch- pcm input

    Sensor return-pcm input

    Throttle position sensor (tps)-pcm input

    Vehicle speed and distance sensor- pcm input

    Auto shutdown (asd) relay-pcm output

    CCD bus (+/-) circuits-pcm outputs

    Data link connector-pcm input and output

    Fuel injectors-pcm output

    Fuel pump relay-pcm output

    Idle air control (iac) motor-pcm output

    Radiator fan relay-pcm output

    Throttle body

    Jeep Cherokee Service Manual / Fuel system / Fuel injection system / Description and operation / Manifold absolute pressure (map) sensor-pcm input

    Jeep Cherokee Service Manual

    Categories


    © 2017-2024 Copyright www.jcherokee.com